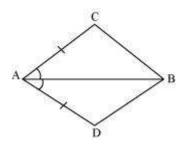


Exercise 7.1

Question 1:

In quadrilateral ACBD, AC = AD and AB bisects \angle A (See the given figure). Show that \triangle ABC \cong \triangle ABD. What can you say about BC and BD?



Answer:

In \triangle ABC and \triangle ABD,

AC = AD (Given)

 $\angle CAB = \angle DAB$ (AB bisects $\angle A$)

AB = AB (Common)

 \therefore \triangle ABC \cong \triangle ABD (By SAS congruence rule)

 \therefore BC = BD (By CPCT)

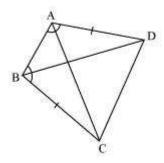
Therefore, BC and BD are of equal lengths.

Question 2:

ABCD is a quadrilateral in which AD = BC and \angle DAB = \angle CBA (See the given figure).

Prove that

- (i) $\triangle ABD \cong \triangle BAC$
- (ii) BD = AC
- (iii) $\angle ABD = \angle BAC$.



Answer:

In $\triangle ABD$ and $\triangle BAC$,

AD = BC (Given)

 $\angle DAB = \angle CBA$ (Given)

AB = BA (Common)

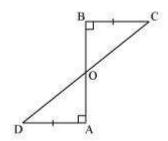
 \therefore \triangle ABD \cong \triangle BAC (By SAS congruence rule)

 \therefore BD = AC (By CPCT)

And, $\angle ABD = \angle BAC$ (By CPCT)

Question 3:

AD and BC are equal perpendiculars to a line segment AB (See the given figure). Show that CD bisects AB.



Answer:

In $\triangle BOC$ and $\triangle AOD$,

 \angle BOC = \angle AOD (Vertically opposite angles)

 \angle CBO = \angle DAO (Each 90°)

BC = AD (Given)

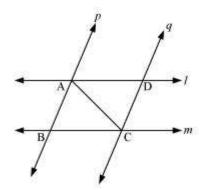
 \therefore \triangle BOC \cong \triangle AOD (AAS congruence rule)

Maths

- \therefore BO = AO (By CPCT)
- \Rightarrow CD bisects AB.

Question 4:

I and m are two parallel lines intersected by another pair of parallel lines p and q (see the given figure). Show that $\triangle ABC \cong \triangle CDA$.



Answer:

In \triangle ABC and \triangle CDA,

 \angle BAC = \angle DCA (Alternate interior angles, as $p \mid\mid q$)

AC = CA (Common)

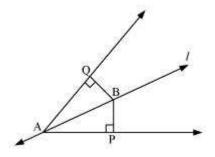
 \angle BCA = \angle DAC (Alternate interior angles, as $I \mid I \mid m$)

 \square \triangle ABC \square \triangle CDA (By ASA congruence rule)

Question 5:

Line I is the bisector of an angle $\Box A$ and B is any point on I. BP and BQ are perpendiculars from B to the arms of $\Box A$ (see the given figure). Show that:

- (i) ΔAPB □ ΔAQB
- (ii) BP = BQ or B is equidistant from the arms of $\Box A$.



Page 3 of 28

In $\triangle APB$ and $\triangle AQB$,

 $\Box APB = \Box AQB$ (Each 90°)

 \Box PAB = \Box QAB (/ is the angle bisector of \Box A)

AB = AB (Common)

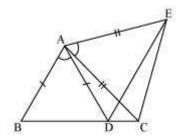
□ ΔAPB □ ΔAQB (By AAS congruence rule)

 \square BP = BQ (By CPCT)

Or, it can be said that B is equidistant from the arms of $\Box A$.

Question 6:

In the given figure, AC = AE, AB = AD and $\Box BAD = \Box EAC$. Show that BC = DE.



Answer:

It is given that $\Box BAD = \Box EAC$

 $\square BAD + \square DAC = \square EAC + \square DAC$

 \square BAC = \square DAE

In $\triangle BAC$ and $\triangle DAE$,

AB = AD (Given)

 \square BAC = \square DAE (Proved above)

AC = AE (Given)

□ ΔBAC □ ΔDAE (By SAS congruence rule)

 \square BC = DE (By CPCT)

Question 7:

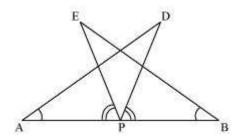
AB is a line segment and P is its mid-point. D and E are points on the same side of

AB such that \Box BAD = \Box ABE and \Box EPA = \Box DPB (See the given figure). Show that

(i) ΔDAP □ ΔEBP

Maths

(ii) AD = BE



Answer:

It is given that $\Box EPA = \Box DPB$

 \square \square EPA + \square DPE = \square DPB + \square DPE

 \square \square DPA = \square EPB

In \triangle DAP and \triangle EBP,

 $\Box DAP = \Box EBP (Given)$

AP = BP (P is mid-point of AB)

 \Box DPA = \Box EPB (From above)

 \square \triangle DAP \square \triangle EBP (ASA congruence rule)

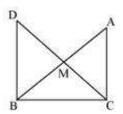
 \square AD = BE (By CPCT)

Question 8:

In right triangle ABC, right angled at C, M is the mid-point of hypotenuse AB. C is joined to M and produced to a point D such that DM = CM. Point D is joined to point B (see the given figure). Show that:

- (i) ΔAMC □ ΔBMD
- (ii) □DBC is a right angle.
- (iii) ΔDBC □ ΔACB

(iv) CM = $\frac{1}{2}$ AB



Answer:

(i) In \triangle AMC and \triangle BMD,

AM = BM (M is the mid-point of AB)

 \square AMC = \square BMD (Vertically opposite angles)

CM = DM (Given)

 \square \triangle AMC \square \triangle BMD (By SAS congruence rule)

 \square AC = BD (By CPCT)

And, \Box ACM = \Box BDM (By CPCT)

(ii) $\square ACM = \square BDM$

However, \square ACM and \square BDM are alternate interior angles.

Since alternate angles are equal,

It can be said that DB || AC

 \square \square DBC + \square ACB = 180° (Co-interior angles)

 \square \square DBC + 90° = 180°

□ □DBC = 90°

(iii) In ΔDBC and ΔACB,

DB = AC (Already proved)

 \Box DBC = \Box ACB (Each 90 $^{\circ}$)

BC = CB (Common)

 \square \triangle DBC \square \triangle ACB (SAS congruence rule)

(iv) ΔDBC □ ΔACB

 \square AB = DC (By CPCT)

 \square AB = 2 CM

 $\Box \text{ CM} = \frac{1}{2} \text{ AB}$

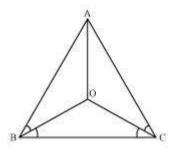
Exercise 7.2

Question 1:

In an isosceles triangle ABC, with AB = AC, the bisectors of \Box B and \Box C intersect each other at O. Join A to O. Show that:

(i) OB = OC (ii) AO bisects □A

Answer:



(i) It is given that in triangle ABC, AB = AC

 \square \square ACB = \square ABC (Angles opposite to equal sides of a triangle are equal)

 \square \square OCB = \square OBC

 \square OB = OC (Sides opposite to equal angles of a triangle are also equal)

(ii) In ΔOAB and ΔOAC,

AO = AO (Common)

AB = AC (Given)

OB = OC (Proved above)

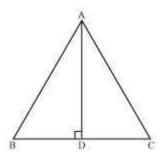
Therefore, $\triangle OAB \square \triangle OAC$ (By SSS congruence rule)

 \square \square BAO = \square CAO (CPCT)

 \square AO bisects \square A.

Question 2:

In \triangle ABC, AD is the perpendicular bisector of BC (see the given figure). Show that \triangle ABC is an isosceles triangle in which AB = AC.



Answer:

In \triangle ADC and \triangle ADB,

AD = AD (Common)

 \Box ADC = \Box ADB (Each 90°)

CD = BD (AD is the perpendicular bisector of BC)

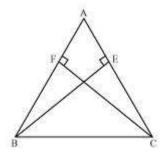
□ ΔADC □ ΔADB (By SAS congruence rule)

 $\Box AB = AC (By CPCT)$

Therefore, ABC is an isosceles triangle in which AB = AC.

Question 3:

ABC is an isosceles triangle in which altitudes BE and CF are drawn to equal sides AC and AB respectively (see the given figure). Show that these altitudes are equal.



Answer:

In $\triangle AEB$ and $\triangle AFC$,

 \square AEB and \square AFC (Each 90°)

 $\Box A = \Box A$ (Common angle)

AB = AC (Given)

 \square \triangle AEB \square \triangle AFC (By AAS congruence rule)

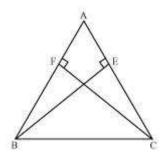
Maths

 \square BE = CF (By CPCT)

Question 4:

ABC is a triangle in which altitudes BE and CF to sides AC and AB are equal (see the given figure). Show that

- (i) \triangle ABE \square \triangle ACF
- (ii) AB = AC, i.e., ABC is an isosceles triangle.



Answer:

- (i) In ΔABE and ΔACF,
- \square ABE and \square ACF (Each 90°)
- $\Box A = \Box A$ (Common angle)

BE = CF (Given)

- \square \triangle ABE \square \triangle ACF (By AAS congruence rule)
- (ii) It has already been proved that

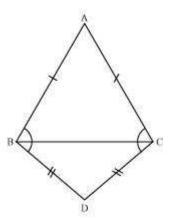
 $\triangle ABE \square \triangle ACF$

 \square AB = AC (By CPCT)

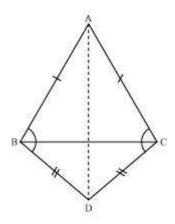
Question 5:

ABC and DBC are two isosceles triangles on the same base BC (see the given figure).

Show that $\square ABD = \square ACD$.



Answer:



Let us join AD.

In \triangle ABD and \triangle ACD,

AB = AC (Given)

BD = CD (Given)

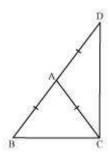
AD = AD (Common side)

 \square \triangle ABD \cong \triangle ACD (By SSS congruence rule)

 \square \square ABD = \square ACD (By CPCT)

Question 6:

 $\triangle ABC$ is an isosceles triangle in which AB = AC. Side BA is produced to D such that AD = AB (see the given figure). Show that $\square BCD$ is a right angle.



Answer:

In ΔABC,

AB = AC (Given)

 \square \square ACB = \square ABC (Angles opposite to equal sides of a triangle are also equal)

In ΔACD,

AC = AD

 \square \square ADC = \square ACD (Angles opposite to equal sides of a triangle are also equal)

In ΔBCD,

 \Box ABC + \Box BCD + \Box ADC = 180° (Angle sum property of a triangle)

 \square \square ACB + \square ACB + \square ACD + \square ACD = 180°

 \Box 2(\Box ACB + \Box ACD) = 180°

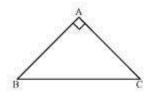
 \Box 2(\Box BCD) = 180°

 \square \square BCD = 90°

Question 7:

ABC is a right angled triangle in which $\Box A = 90^{\circ}$ and AB = AC. Find $\Box B$ and $\Box C$.

Answer:



It is given that

AB = AC

 \Box \Box C = \Box B (Angles opposite to equal sides are also equal)

In ΔABC,

Page 11 of 28

Class IX

Chapter 7 - Triangles

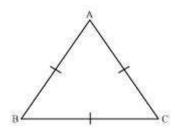
Maths

- $\Box A + \Box B + \Box C = 180^{\circ}$ (Angle sum property of a triangle)
- \square 90° + \square B + \square C = 180°
- \square 90° + \square B + \square B = 180°
- \Box 2 \Box B = 90°
- □ □B = 45°
- \square \square B = \square C = 45°

Question 8:

Show that the angles of an equilateral triangle are 60° each.

Answer:



Let us consider that ABC is an equilateral triangle.

Therefore, AB = BC = AC

AB = AC

 \square \square C = \square B (Angles opposite to equal sides of a triangle are equal)

Also,

AC = BC

 \square \square B = \square A (Angles opposite to equal sides of a triangle are equal)

Therefore, we obtain

 $\Box A = \Box B = \Box C$

In ΔABC,

 $\Box A + \Box B + \Box C = 180^{\circ}$

 $\Box \Box A + \Box A + \Box A = 180^{\circ}$

□ 3□A = 180°

 $\square \square A = 60^{\circ}$

 $\square \square A = \square B = \square C = 60^{\circ}$

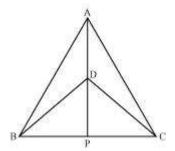
Hence, in an equilateral triangle, all interior angles are of measure 60°.

Exercise 7.3

Question 1:

 ΔABC and ΔDBC are two isosceles triangles on the same base BC and vertices A and D are on the same side of BC (see the given figure). If AD is extended to intersect BC at P, show that

- (i) ΔABD □ ΔACD
- (ii) ΔABP □ ΔACP
- (iii) AP bisects \Box A as well as \Box D.
- (iv) AP is the perpendicular bisector of BC.



Answer:

(i) In \triangle ABD and \triangle ACD,

AB = AC (Given)

BD = CD (Given)

AD = AD (Common)

 \square \triangle ABD \square \triangle ACD (By SSS congruence rule)

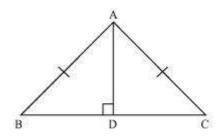
 \square \square BAD = \square CAD (By CPCT)

 \square \square BAP = \square CAP (1)

(ii) In $\triangle ABP$ and $\triangle ACP$,

AB = AC (Given)
$\square BAP = \square CAP$ [From equation (1)]
AP = AP (Common)
\square \triangle ABP \square \triangle ACP (By SAS congruence rule)
\square BP = CP (By CPCT) (2)
(iii) From equation (1),
$\square BAP = \square CAP$
Hence, AP bisects □A.
In Δ BDP and Δ CDP,
BD = CD (Given)
DP = DP (Common)
BP = CP [From equation (2)]
\square \triangle BDP \square \triangle CDP (By S.S.S. Congruence rule)
\square \square BDP = \square CDP (By CPCT) (3)
Hence, AP bisects □D.
(iv) ΔBDP □ ΔCDP
\square \square BPD = \square CPD (By CPCT) (4)
\Box BPD + \Box CPD = 180 $^{\circ}$ (Linear pair angles)
\Box BPD + \Box BPD = 180 $^{\circ}$
$2\Box BPD = 180^{\circ}$ [From equation (4)]
$\square BPD = 90^{\circ} \dots (5)$
From equations (2) and (5), it can be said that AP is the perpendicular bisector of
BC.
Question 2:
AD is an altitude of an isosceles triangles ABC in which $AB = AC$. Show that
(i) AD bisects BC (ii) AD bisects □A.

Answer:



(i) In $\triangle BAD$ and $\triangle CAD$,

 \square ADB = \square ADC (Each 90° as AD is an altitude)

AB = AC (Given)

AD = AD (Common)

 $\square \Delta BAD \square \Delta CAD$ (By RHS Congruence rule)

 \square BD = CD (By CPCT)

Hence, AD bisects BC.

(ii) Also, by CPCT,

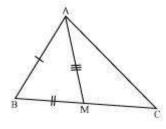
 $\Box BAD = \Box CAD$

Hence, AD bisects $\square A$.

Question 3:

Two sides AB and BC and median AM of one triangle ABC are respectively equal to sides PQ and QR and median PN of Δ PQR (see the given figure). Show that:

- (i) $\triangle ABM \square \triangle PQN$
- (ii) ΔABC □ ΔPQR





Answer:

(i) In \triangle ABC, AM is the median to BC.

Chapter 7 – Triangles

 \square BM = $\frac{1}{2}$ BC

In $\triangle PQR$, PN is the median to QR.

 $\Box QN = \frac{1}{2}QR$

However, BC = QR

 $\frac{1}{2}_{BC} = \frac{1}{2}_{QR}$

 \square BM = QN ... (1)

In $\triangle ABM$ and $\triangle PQN$,

AB = PQ (Given)

BM = QN [From equation (1)]

AM = PN (Given)

 \square \triangle ABM \square \triangle PQN (SSS congruence rule)

 $\square ABM = \square PQN$ (By CPCT)

 $\Box ABC = \Box PQR \dots (2)$

(ii) In \triangle ABC and \triangle PQR,

AB = PQ (Given)

 $\square ABC = \square PQR$ [From equation (2)]

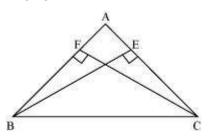
BC = QR (Given)

☐ ΔABC ☐ ΔPQR (By SAS congruence rule)

Question 4:

BE and CF are two equal altitudes of a triangle ABC. Using RHS congruence rule, prove that the triangle ABC is isosceles.

Answer:



In \triangle BEC and \triangle CFB,

 \Box BEC = \Box CFB (Each 90°)

BC = CB (Common)

BE = CF (Given)

 \square \triangle BEC \square \triangle CFB (By RHS congruency)

 \square \square BCE = \square CBF (By CPCT)

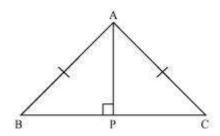
 \square AB = AC (Sides opposite to equal angles of a triangle are equal)

Hence, \triangle ABC is isosceles.

Question 5:

ABC is an isosceles triangle with AB = AC. Drawn AP \square BC to show that \square B = \square C.

Answer:



In $\triangle APB$ and $\triangle APC$,

 $\Box APB = \Box APC$ (Each 90°)

AB = AC (Given)

AP = AP (Common)

 \square \triangle APB \square \triangle APC (Using RHS congruence rule)

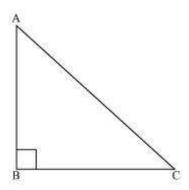
 $\square \square B = \square C$ (By using CPCT)

Exercise 7.4

Question 1:

Show that in a right angled triangle, the hypotenuse is the longest side.

Answer:



Let us consider a right-angled triangle ABC, right-angled at B.

In ΔABC,

 $\Box A + \Box B + \Box C = 180^{\circ}$ (Angle sum property of a triangle)

 $\Box A + 90^{\circ} + \Box C = 180^{\circ}$

 $\Box A + \Box C = 90^{\circ}$

Hence, the other two angles have to be acute (i.e., less than 90°).

 \square \square B is the largest angle in \triangle ABC.

 \square \square B > \square A and \square B > \square C

 \square AC > BC and AC > AB

[In any triangle, the side opposite to the larger (greater) angle is longer.]

Therefore, AC is the largest side in \triangle ABC.

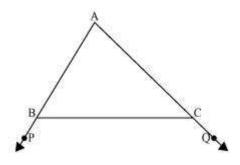
However, AC is the hypotenuse of \triangle ABC. Therefore, hypotenuse is the longest side in a right-angled triangle.

Question 2:

In the given figure sides AB and AC of \triangle ABC are extended to points P and Q respectively. Also, \square PBC $< \square$ QCB. Show that AC > AB.

Maths

Class IX Chapter 7 – Triangles



Answer:

In the given figure,

 \Box ABC + \Box PBC = 180° (Linear pair)

 \square \square ABC = 180° - \square PBC ... (1)

Also,

 \Box ACB + \Box QCB = 180°

 $\Box ACB = 180^{\circ} - \Box QCB \dots (2)$

As $\Box PBC < \Box QCB$,

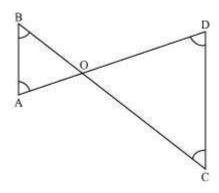
 \square 180° - \square PBC > 180° - \square QCB

 \square \square ABC > \square ACB [From equations (1) and (2)]

 \square AC > AB (Side opposite to the larger angle is larger.)

Question 3:

In the given figure, $\Box B < \Box A$ and $\Box C < \Box D$. Show that AD < BC.



Answer:

In ΔAOB,

 $\Box B < \Box A$

 \Box AO < BO (Side opposite to smaller angle is smaller) ... (1)

In ΔCOD,

 $\Box C < \Box D$

 \square OD < OC (Side opposite to smaller angle is smaller) ... (2)

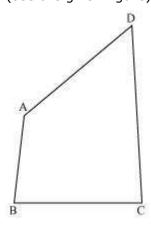
On adding equations (1) and (2), we obtain

AO + OD < BO + OC

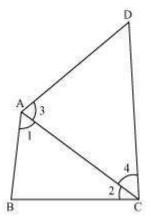
AD < BC

Question 4:

AB and CD are respectively the smallest and longest sides of a quadrilateral ABCD (see the given figure). Show that $\Box A > \Box C$ and $\Box B > \Box D$.



Answer:

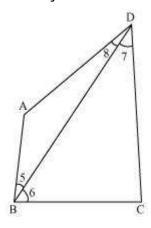


Let us join AC.

In $\triangle ABC$, AB < BC (AB is the smallest side of quadrilateral ABCD) $\square \ \square \ 2 < \square \ 1$ (Angle opposite to the smaller side is smaller) ... (1)

In $\triangle ADC$, AD < CD (CD is the largest side of quadrilateral ABCD) $\square \ \square \ 4 < \square \ 3$ (Angle opposite to the smaller side is smaller) ... (2)

On adding equations (1) and (2), we obtain $\square \ 2 + \square \ 4 < \square \ 1 + \square \ 3$ $\square \ \square \ C < \square \ A$ $\square \ \square \ A > \square \ C$ Let us join BD.



In ΔABD,

AB < AD (AB is the smallest side of quadrilateral ABCD)

 \square \square 8 < \square 5 (Angle opposite to the smaller side is smaller) ... (3)

In ΔBDC,

BC < CD (CD is the largest side of quadrilateral ABCD)

 \square \square 7 < \square 6 (Angle opposite to the smaller side is smaller) ... (4)

On adding equations (3) and (4), we obtain

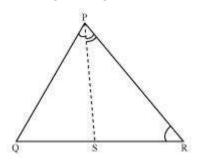
 $\Box 8 + \Box 7 < \Box 5 + \Box 6$

 \square \square D < \square B

 \square \square B > \square D

Question 5:

In the given figure, PR > PQ and PS bisects \Box QPR. Prove that \Box PSR > \Box PSQ.



Answer:

As PR > PQ,

 \square PQR > \square PRQ (Angle opposite to larger side is larger) ... (1)

PS is the bisector of \square QPR.

 $\square \square QPS = \square RPS \dots (2)$

 \square PSR is the exterior angle of \triangle PQS.

 $\square \square PSR = \square PQR + \square QPS \dots (3)$

 \square PSQ is the exterior angle of \triangle PRS.

 \square PSQ = \square PRQ + \square RPS ... (4)

Adding equations (1) and (2), we obtain

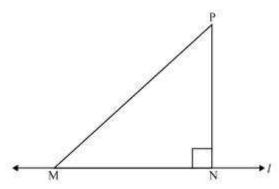
 $\square PQR + \square QPS > \square PRQ + \square RPS$

 \square PSR > \square PSQ [Using the values of equations (3) and (4)]

Question 6:

Show that of all line segments drawn from a given point not on it, the perpendicular line segment is the shortest.

Answer:



Let us take a line / and from point P (i.e., not on line /), draw two line segments PN and PM. Let PN be perpendicular to line / and PM is drawn at some other angle.

In ΔPNM,

 $\Box N = 90^{\circ}$

 $\Box P + \Box N + \Box M = 180^{\circ}$ (Angle sum property of a triangle)

 $\Box P + \Box M = 90^{\circ}$

Clearly, $\square M$ is an acute angle.

 \square \square M < \square N

 \square PN < PM (Side opposite to the smaller angle is smaller)

Similarly, by drawing different line segments from P to I, it can be proved that PN is smaller in comparison to them.

Therefore, it can be observed that of all line segments drawn from a given point not on it, the perpendicular line segment is the shortest.

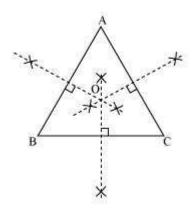
Exercise 7.5

Question 1:

ABC is a triangle. Locate a point in the interior of \triangle ABC which is equidistant from all the vertices of \triangle ABC.

Answer:

Circumcentre of a triangle is always equidistant from all the vertices of that triangle. Circumcentre is the point where perpendicular bisectors of all the sides of the triangle meet together.



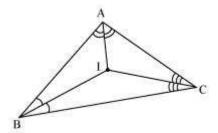
In $\triangle ABC$, we can find the circumcentre by drawing the perpendicular bisectors of sides AB, BC, and CA of this triangle. O is the point where these bisectors are meeting together. Therefore, O is the point which is equidistant from all the vertices of $\triangle ABC$.

Question 2:

In a triangle locate a point in its interior which is equidistant from all the sides of the triangle.

Answer:

The point which is equidistant from all the sides of a triangle is called the incentre of the triangle. Incentre of a triangle is the intersection point of the angle bisectors of the interior angles of that triangle.



Here, in ΔABC , we can find the incentre of this triangle by drawing the angle bisectors of the interior angles of this triangle. I is the point where these angle bisectors are intersecting each other. Therefore, I is the point equidistant from all the sides of ΔABC .

Question 3:

In a huge park people are concentrated at three points (see the given figure)

B•

A: where there are different slides and swings for children,

B: near which a man-made lake is situated,

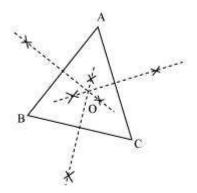
C: which is near to a large parking and exit.

Where should an ice-cream parlour be set up so that maximum number of persons can approach it?

(Hint: The parlor should be equidistant from A, B and C)

Answer:

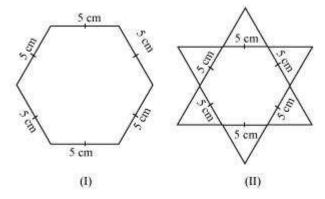
Maximum number of persons can approach the ice-cream parlour if it is equidistant from A, B and C. Now, A, B and C form a triangle. In a triangle, the circumcentre is the only point that is equidistant from its vertices. So, the ice-cream parlour should be set up at the circumcentre O of Δ ABC.



In this situation, maximum number of persons can approach it. We can find circumcentre O of this triangle by drawing perpendicular bisectors of the sides of this triangle.

Question 4:

Complete the hexagonal and star shaped *rangolies* (see the given figures) by filling them with as many equilateral triangles of side 1 cm as you can. Count the number of triangles in each case. Which has more triangles?

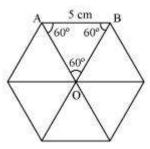


Answer:

It can be observed that hexagonal-shaped *rangoli* has 6 equilateral triangles in it.

Class IX

Chapter 7 – Triangles Maths



Area of
$$\triangle OAB$$
 = $\frac{\sqrt{3}}{4} (side)^2 = \frac{\sqrt{3}}{4} (5)^2$

$$=\frac{\sqrt{3}}{4}(25)=\frac{25\sqrt{3}}{4}\text{ cm}^2$$

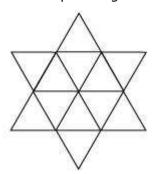
Area of hexagonal-shaped rangoli = $6 \times \frac{25\sqrt{3}}{4} = \frac{75\sqrt{3}}{2} \text{ cm}^2$

Area of equilateral triangle having its side as 1 cm = $\frac{\sqrt{3}}{4}(1)^2 = \frac{\sqrt{3}}{4}$ cm²

Number of equilateral triangles of 1 cm side that can be filled

in this hexagonal-shaped
$$rangoli = \frac{75\sqrt{3}}{\frac{\sqrt{3}}{4}} = 150$$

Star-shaped rangoli has 12 equilateral triangles of side 5 cm in it.



Area of star-shaped rangoli =
$$12 \times \frac{\sqrt{3}}{4} \times (5)^2 = 75\sqrt{3}$$

Page 27 of 28

Number of equilateral triangles of 1 cm side that can be filled

in this star-shaped rangoli
$$=\frac{75\sqrt{3}}{\frac{\sqrt{3}}{4}} = 300$$

Therefore, star-shaped *rangoli* has more equilateral triangles in it.